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ABSTRACT 

We give a geometr ic  descr ipt ion of the  uni t  root spl i t t ing of the  Hodge 

fi l t rat ion of the  first de R h a m  cohomology of an  ord inary  Abel ian variety 

over a local field, as the  spl i t t ing de te rmined  by a formal  comple t ion  of 

the  universal  vectorial ex tens ion of the  Abel ian variety. 

1. I n t r o d u c t i o n  

The main purpose of this paper is to glve a geometric description of the unit root 

splitting of the Hodge filtration of the first de Rham cohomology of an ordinary 

semistable Abelian variety over a local field. More precisely, let K be a finite 

extension of Qp, R its ring of integers, mR its maximal ideal and k the residue 

field. Let us denote by AK a semistable Abelian variety over K,  by A~ its dual 

and by IK the universal vectorial extension of AK. So we have an exact sequence 

of algebraic groups over K 

(1) O ----~ VK -+ I K ---+ A I( -+ O, 

where VK is a vector group. Let A be the Neron model of AK and I and V 

be group schemes over R (V is a vector group) with generic fibers I g  and VK, 

respectively, and such that  we have an exact sequence of group schemes over R 

(2) O ~  V - +  I ~ A ~ O .  
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Now we formally complete each term of the exact sequence (2) along the identities 

of their special fibers (this operation will be denoted by superscript f )  and get 

the exact sequence of formal groups over R: 

(3) 0 -~ V f ~ I f --+ A f ~ 0. 

If AK is an ordinary semistable Abelian variety, A f is a formal group of multi- 

plicative type, i.e., A f ~ (G/~) g, where g =dimAg,  and the isomorphism above 

is defined over R ur, the ring of integers of K ur, the completion of the maximal 

unramified extension of K.  Therefore there exists a unique splitting of the exact 

sequence (3) defined over R ~ ,  which we denote by v. We denote by Lie(v) the 

map induced by v on the Lie algebras and by v* the pullback by v on differentials. 

As we see in section 2, the exact sequence of Lie algebras induced by (3) can 

be identified with the Hodge-filtration exact sequence of H 1 tA ~ ~ dRk K/, i.e., we have 

a commutative diagram with exact rows: 

0 --~ Lie(Vf)K --+ Lie(If)K --+ Lie(Af)K -+ 0 
$--- ~ $-~ 

t ~ Lie(Ag) -+ 0 0 ~ H°(A~K,f~tA,K) -+ H~R(AK) --+ 

The main result of this paper is 

THEOREM 1.1: The map Lie(v) is, under the identifications above, the unit root 

splitting of the Hodge filtration of H~R(A~K)K~r. 

We remark that Theorem 1.1 is known if AK has good ordinary reduction 

(see [C-UVB], Proposition 3.1.2, page 641). No proof of this result is given in 

[C-UVB], so the present paper supplies the proof for the good reduction case as 

well. One might be interested in this result in relation to p-adic height pairings, 

namely: the method of Zarhin in [Za] allows one to produce from a splitting of 

the Hodge filtration of H~R(A~K) a local p-adic height pairing. A consequence of 

Theorem 1.1 is that  the p-adic height pairing produced by Lie(v), where v is the 

splitting of (3) discussed above, coincides with the p-adic height pairing produced 

by the unit root splitting. 

The plan of the paper is the following: in section 2 we investigate properties of 

the Dieudonn~ module of a formal group 3 c over R, denoted D(3C/R), and prove 

that  if AK is any semistable Abelian variety over K,  then we have an exact 

sequence 

~1  ~A ~slope=0 D ( A f / K )  --+ 0. (4) 0 ~ ~.dR~KJ -+ H~R(AK) --+ 

This generalizes the similar result for the good reduction case in [K]. 
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In section 3 we complete the proof of Theorem 1.1 above, analyzing the be- 

haviour of the Poincard (cup-product) pairing with respect to the Frobenius- 

equivariant decomposition of H~R(AK ) and 1 i H~R(AK). We prove that  if AK is 

ordinary semistable, the unit root subspaces of AK and A~- are orthogonal with 

respect to the Poincard pairing. This generalizes the similar result for the good 

reduction case in [C-UVB]. 

Finally, in the Appendix we show that  the Dieudonn~ module of a formal 

group ~- over R can be interpreted as the first cohomology group of a double 

complex attached to 9 c. This is not used elsewhere in the paper, but we think it 

is interesting and have not seen it in the literature. 

ACKNOWLEDGEMENT: We are most grateful to R. Coleman and A. Werner 

for very stimulating discussions. We owe R. Coleman the proof of Proposition 

3.4. We thank the referee for the careful reading of the manuscript and for the 

reference to Le Stum's  thesis (see Remark 3.4.) 

2. D i e u d o n n 6  m o d u l e s  o f  formal  groups  h la H o n d a  and  K a t z  

Let us start  with some notations. Let K ,  R, mR and k be as in the Introduction. 

If X is any group scheme over R, we denote by X f the formal completion of X 

along its special fiber. It  is a formal group over R. If X and Y are group schemes 

over R and u is a pointed morphism of schemes (i.e., it preserves the identities), 

we denote by u f the formal completion of u, i.e., the morphism of pointed formal 

schemes X f --+ y I  induced by u. If X is now any group scheme or formal group 

over R, we denote by Lie(X) and Inv(X) the Lie algebra and the R-module of 

invariant 1-forms of X,  respectively. Also, if M is any group scheme over R or 

any R-module, we denote by MK the object obtained from M by extending the 

scalars to K,  i.e., MK: = M ®R K. If f is a morphism of R-group schemes or 

R-modules, we denote fg:  = f @R idg.  Throughout the paper, whenever we 

have X C Y, for X, Y schemes or formal schemes, we denote by res Y, or simply 

by res, the restriction map for differentials or de Rham cohomology. Let now A, 

I, AK and I g  be as in the Introduction. Then we have 

LEMMA 2.1: H1R(A)K ~- H~R(AK) and H1R(I)K TM H1R(IK), where the maps 

are induced by restriction to the generic fibers. 

Proof." As K is fiat over R, the base change theorem for sheaf cohomology works 

for A and I (they are both smooth over R), and so we get isomorphisms between 

the Hodge to de Rham spectral sequences. Therefore, the maps induced on the 

graded quotients are isomorphisms and we get the conclusion. 
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LEMMA 2.2: We have the following canonical identifications: 
(a) L i e ( I f )g  =~ Lie(I)K ="~ Lie(IK) =~ H~R(A~) 

and 
(b) Inv(IS)K U Inv(I)K -~ Inv(I~) ----- H~R(AK). 
Also, 
(c) Lie(AI)K ~ Lie(A)g ~ Lie(Ag) ~ HI(A~, OA,K) 

and 
(d) Inv(AI)K ~ Inv(A)g ~ Inv(Ag) "" H°(AK f~lA~/g ) 

Proof'. The first two isomorphisms in each row come from standard facts (see 

[G-D] and the proof of the Lemma 2.1). For the last isomorphism in (a) see 

[Ma-Me], for the last one in (b) see [C-UVB], and for the last isomorphisms in 

(c) and (d) see [M]. 

Theorem 1.1 of the Introduction mentions "the unit root splitting" of the 

Hodge filtration of the de Rham cohomology of an ordinary semistable Abelian 

variety. Let us first recall what "the unit root splitting" is. If AK is a semistable 

abelian variety over K,  then we have a Frobenius endomorphism o n  HIR(AK), 
whose definition depends on a choice of a branch of the p-adic logarithm on K*. 

(Actually, we have three such Frobenii, namely, the one defined by Hyodo-Kato 

in [H-K], one coming from Fontaine's theory of semistable Galois representations 

[Fo-SS], and finally one defined specifically for Abelian varieties in [C-I]. It is 

proved in [Ts] and [C-I] that if AK is split semistable, then these are all the same.) 

So the unit root subspace of  H~R(AK) is defined to be the slope zero subspace 

for the action of Frobenius. It is proved in fill, in a more general context (and a 

simple proof for Abelian varieties is provided in Corollary 3.1 of this paper), that  

this subspace is independent of the choice of Frobenius. Moreover, its intersection 

with the Hodge filtration is {0}. Now if AK is ordinary, then the dimension of the 

unit root subspace is equal to the dimension of AK. So the unit root splitting of 

the Hodge filtration of H~R(AK) is the splitting defined by taking the unit root 

subspace to be the complement of H ° (AK, ~tlAK/K)" If AK is ordinary semistable, 

then A~ is also ordinary semistable. 

Let us now go back to Theorem 1.1 and the notations at the beginning of 

the section. As the map Lie(v)K can be interpreted as a splitting of the Hodge 

filtration of H~R(A'K) , all we need to show in order to prove the Theorem is that 

its image is the unit root subspace of H I ta ,  ~ In order to prove this, we first 
d R ~ , ~ K ]  . 

prove 



Vol. 120, 2 0 0 0  FORMAL SECTIONS AND DE RHAM COHOMOLOGY 433 

THEOREM 2.3: The map v* is, under the identifications in Lemma 2.2, the unit 
root splitting of the Hodge filtration of H~R(AK)K~. 

For the proof of Theorem 2.3 we only need to show that Ker(v*) is the unit root 

subspace of H1R(AK)K~r. Before starting the proof of Theorem 2.3 we need some 

results on the de Rham cohomology and Dieudonn~ modules of formal groups. 

Let 9 v be an n-dimensional formal group over R (see [K] for a definition and basic 

properties). We denote by A(~)  the affine algebra of j r  (if we fix a system of 

coordinates X =- (X1, X 2 , . . . ,  Xn) of 9 r,  then A(~') --- R[[X]]). If 6 is another 

formal group and f :  ~ --+ G is a morphism of formal schemes (or a homomorphism 

of formal groups), we denote by f* the continuous homomorphism of R-algebras 

(or of R-bialgebras, respectively) 

f*: A(~) --+ A(~') 

induced by f .  

If ~', G, 74 are formal groups over R, we say that the sequence 

(5) o 7 4 - > o  

is exact if it is an exact sequence of abelian sheaves on the fppf topology. In 

particular, the fact that the sequence is exact implies that 

9 c --- G xn,~u Spf(R), 

where (n:  Spf(R) -4 74 is the unit section (see [Me]). 

Let us denote by CFG(R) the additive category of commutative formal groups 

over R ([K]). Then if ~ ECFG(R) of dimension n, the cohomology groups 

H~n(.~/R ) are the R-modules obtained by taking the cohomology of the for- 

mal de Rham complex f~~/R (this is the separated completion of the "literal" de 

Rham complex of A(}') as R-algebra). Let m, prl, pr2:9 r x }- --+ ~" be the group 

law and the two projections (they are morphisms in CFG(R)).  Then we define 

the Dieudonn~ module of ~', D(br/R),  to be the R-submodule of H~R(Y/R ) 
consisting of the primitive elements, i.e., the elements a E H~n(~ /R  ) such that  

m*(a) = pr~(a) + pr~(a) in H~R(.~/R ). 

Lemma 5.1 in [K] asserts that the association: 9 v -+ D(~ ' /R)  defines a contravari- 

ant additive functor from CFG(R) to R-modules. We always extend scalars to 

K,  so let us denote 

D(Sr /K):  = D(~/R)K:  = D(gr/R) ®n K. 
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If ~" is a p-divisible formal group of height h (in the sense of [K]), then D(h r /K)  

is a vector space of dimension h. We have the following description of D($- /K) :  

let T = (T1, T2 , . . . ,  T~) be a system of coordinates of 3 c. Then we have 

LEMMA 2.4: D ( T / K )  = {f  • KILT]] I f(02=) = O, df • d(R[[X]]K), and 

f ( X  ~- Y ) -  f ( X ) -  f ( Y )  • R[[X,Y]]K}/{f • R[[T]]KI f(02=) = 0}, where 
2= 
+ is the group law of.~. 

Proof: This follows easily from the description in [K] p. 193. 

The next two Lemmas are obviously well-known, but we write them here for 

better  reference. 

LEMMA 2.5: Let .~ = (Ga/) n be defined over R and let T = (T1,T2, . . . ,Tn)  be 

a system of coordinates of~'. Let F • K[[T]] be a homomorphism F: .T --+ G~, 

defined over g .  Then F • R[[T]]K. 

Proof'. If F is a homomorphism then F ( X  4- Y) = F(X)  + F(Y) ,  where 

X = ( X 1 , X 2 , . . . , X ~ )  and Y = (Y1,Y2,...,Yn) and the equality takes place 

in K[[X,Y]]. Therefore, F(T) = alT1 + a2T2 4-""  + a~Tn, with ai • K,  so 

indeed F • R[[T]]K. | 

LEMMA 2.6: Let T = (T1, T2,. . . ,  Tn) and F, G • K[[T]] be such that: 

(a) F ,C  are convergent on (mR) (i.e., on the R-rational points of the open 

unit polydisk around (0, 0 , . . . ,  0)). 

(b) F(x) = G(x) for • • (mR) 

Then F = G. 

Proof: F, G give functions F(R),  G(R): (mn) n -+ K, which are continuous and 

indefinitely differentiable at (0, 0 , . . . ,  0). The partial derivatives can be defined 

using limits, as in elementary calculus, and can also be computed like this: for- 

mally partial differentiate the power series and evaluate the result at (0, 0 , . . . ,  0). 

As F(R) = G(R), all their partial derivatives at (0 ,0 , . . . ,  0) are equal, so the 

coefficients of the power series are equal, so F -- G. | 

Let, as above, T = (T1, T2 , . . . ,  Tn); then we define on K[[T]] the linear topology 

T by defining a basis of neighborhoods of zero to be 

Us,t: = ~SR[[T]] + TtK[[T]], where s, t e N, 

and where ~ is a uniformizer of R and we denote by TtK[[T]] the ideal 

(T1K[[T]] + T2K[[T]] + . . .  + T,~K[[T]]) t in K[[T]]. Then we have the follow- 

ing 
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LEMMA 2.7: (a) The topology ~- is separated and its restriction to R[[T]] is the 

usual topology on R[[T]]. 

(b) I ra  E rR[[T]] + T .  R[[T]] then we have 

am/m -~ 0 when m --+ cx~. 

Proo~ (a) is clear; and for (b) notice that  a can be written as a = a + b, where 

a E mR and b • T .  R[[T]]. Then, it is enough to investigate the case when 

m = pk and we have 

ap k/pk • a[p~/21/pk . R[[T]] + T[pk /2]+I K[[T]], 

where [.] denotes the greatest integer part  function. So the result follows from 

the fact that  v(a[pk/2]/p k) >_ [pk/2] - ek --+ c~ as k --+ ~ ,  where e denotes the 

absolute ramification degree of K.  I 

Let now ~-: = Spf(R[[T]]) be a formal Lie variety over R and let us define 

M ( ~ )  to be the R-submodule of K[[T]] of all power series F such that  dF E 

~- /R"  Let 6 = Spf(R[[X]]) and ¢: G ~ 3 c be a morphism of formal Lie varieties. 

LEMMA 2.8: There exists a unique, continuous R-module homomorphism 

q2: M(.T) --~ K[[X]] which extends ¢*. Moreover, the image of q2 is contained in 

M(G). 

As ¢*: R[[T]] --+ R[[X]] is a continuous R-algebra homomorphism we Proof: 

have 

¢*(Ti) E Tr'R[[X]]+ X'R[[X]] f o r i = l , 2 , . . . , n .  

So, if F E M(5 r) we define gJ(F) = F(¢*(T1),¢*(T2), . . . ,¢*(T, , )) .  By Lemma 

2.7 (b) this makes sense and we are done. 1 

Let us now consider again the exact sequence, of formal groups (5): 

(5) m n 

such that  now iT is a finite power of the formal additive group over R, i.e., 

iT ~ (G/a) *n, for some m • N.  Let us also consider a pointed morphism of formal 

R-schemes u: 7/ ~ ~ which is a section of ~o (pointed morphism means that  

u(On) = 06.) Then we have 

Inv(6)K ~-~ ,nl,cl ~ pf_~J H~R(7//R)K ' [~7.t/RJK 

where fll,cl denotes the space of closed 1-forms. The following proposition is a 

key result. 
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PROPOSITION 2.9: In the notations and hypothesis above: 
(a) The image of (proj ou~:) is contained in D(~/ /K) .  

(b) If  w is another pointed section (as formal schemes) of ~ then (proj ou~) = 

(proj ow~¢). 

Proof'. Let y E Inv(G/R) and let us denote w = u*0/) e f~ /R"  Then as the 

invariant forms are closed, we have dw = du*~l = u*&7 = 0, so w is a closed 1-form. 

Let T = (T1, T2 , . . . ,  T,~) and U = (U1, U2, . . . ,  Urn) be systems of coordinates on 

n and ~ respectively, so A(7-/) -~ R[[T]] and A(G) ~ R[[U]]. Let F~ e K[[T]] and 

Fn e K[[U]] be uniquely determined by the conditions: dEw = w, F~(0) = 0 and 

dF~ = 71, Fn(O) = O. It follows that  u 'F ,  = F~. Let us now consider the power 

series: G(X, Y) • g[[z ,  Y]], X = (X1, X2 , . . . ,  Xn), Y = (Yt, Y2, . . . ,  Y,,) defined 

by 
G(X,Y)  = F~(X ~ Y) - Fw(X) - F~(Y). 

Given the description of D(7 / /K)  in Lemma 2.4 we want to prove that G(X, Y) • 
R[[X, Y]]K. As Fw and Fu are obtained by formal integration of closed 1-forms 

defined over R, they will be convergent on 7/(R) = (mR)" and G(R) = (mR)rn 
respectively and they give: 

a function of sets, F~(R): ~/(R) --+ K, 

and respectively 

a group homomorphism, F,(R):  G(R) ~ K. 

If X is a formal group over R, let 

Ax:  A(X)  ~ A (X)~A(X)  be thecomultiplication, 
ex: A(X)  -+ R be the augmentation, 
a x :  A(X) --+ A(X) be the coinverse, 
i l ,x, i2,x: A(X)  ~ A (X)~A(X)  be the maps ij ,x =pr~,x,  j = 1,2. 

Let us then define the following continuous R-algebra homomorphism: 

f*: A(~) -~ A(7"l)@A(7"l) 

to be the composition: 

A(G) ~-~ A(G)@A(G) ,~¢__~id A(~)~A(G)~A(G) id~@ag 

A(G)~A(G)~A(G) " * ~ - ~ "  A(7-l)~A(7-l)~A(7-l) an4iE-~ 4i2'~ A(7-l)~A(7-l). 
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Then, as we identify R[[X,Y]] ~- A(Ti)6A(~t) by X -+ il,n(T) -- T@I and 

Y --+ i2,n(T) = I@T, it makes sense to make the 

FIRST CLAIM: (1) G = f*Fn, 
(2) f*~* = * £7i" 

Proof of the First Claim: (1) One can check the claim directly using the 

properties of the co-structures, but given Lemma 2.6 it would be enough to 

check the equality on R-points. So if we denote by f the homomorphism of 

formal schemes induced by f*, we'd like to prove that G(R) and Fn(R) .  f (R )  
are equal as maps of sets from 7-/(R) x 74(R) to K.  Let us first make the map 

f(R): ~t(R) x 74(R) -+ G(R) explicit. It is given by 

f (R) (x ,  y) = u(R)(x ~- y) g- u(R)(x) g- u(R)(y) 

for all (x, y) e 7/(R) xT/(R). Therefore, as Fn(R): G(R) --+ g is a homomorphism 

we have 

Fn(R).  f (R) (x ,  y) = F~(R)(u(R)(x ~- y) ~ u(R)(x) ~- u(R)(y)) 

= Fw(R)(x ~- y) - F~(R)(x) - F.,(R)(y) = G(R)(x,  y), 

for all (x, y) e N(R) x ?-/(n). 
(2) Applying the same Lemma 2.6 it is enough to check this equality on R- 

points, i.e., we want to show that  

~(R) . f (R)  = On(R). 

But this follows easily from the fact that ~o(R) is a group homomorphism and 

~(n)  . u(R) = idn(R). 
Now we can prove (a) of Proposition 2.9. 

As the sequence (5) is exact we have the following cartesian diagram (i.e., 
A(9 r) ~ A(6)~  R) "-~ A(7/) ,en : 

(6) 
A(7-l) ?-+ A(6) 
c;~ $ $¢* 

R c A(~=) 

and continuous R-algebra homomorphisms A(~) 

R C A(7-l)~A(Tt) such that the diagram 

A(7-/) -~ A(G) 

e~ $ S f* 
R c A(7{)6A(n)  

I_~ A(Ti)@A(7-I) and 
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commutes.  There~re ,  there exists a unique continuous R-algebra homomorphism 

~*:A(Y)~A(~)@A(n)  

such that  the diagram 

A(6) ~ A(7-l)~A(?-l) 

II 
A(.T') -~ A(?-l)@A(?-l) 

commutes.  We have G = f*Fn = a*(¢*Fn). As ~ is a power of the formal 

additive group, we deduce from Lemma 2.5 that  ¢*Fn E A(~')K; and as a* is 

defined over R we get that  G E (A(N)CA(?-I))K. 
Now we prove (b) of Proposition 2.9. Let w be a second pointed section (as 

formal schemes) of ~ and let us denote by w': = w*(~/) and by F~, the unique 

element of K[[T]] such that  dF,~, = w' and F,~,(0) = 0. Then let us denote by g* 

the following composition of continuous R-algebra homomorphisms: 

A(6) -~ A(G)CA(6) idA(~aa A(6)~A(6) " ' ~ "  A(7-l)CA(7-l) pr?_~¢t A(7-l). 

So, g*: A(6) -+ A(?-/) and we can make the 

SECOND CLAIM: (1) F w - F w ,  : g*F,7, 
(2) g * .  = 

The proof of the Second Claim is similar to the proof of the First Claim and 

is left to the reader. Moreover, (b) of Proposition 2.9 follows from the Second 

Claim by the same formal argument as above. | 

Now we apply the results of Proposition 2.9 to the exact sequence (3). Let us 

recall it: 

(3) 0 ~ Y ] ~ I f 2~ A f ~ O. 

Let us also recall that  we had a section of ~, which is a homomorphism and is 

defined over R ~r, denoted v. Let us construct another one (it will be defined over 

R and it will not be a homomorphism in general, but only a morphism of pointed 

formal schemes). For this, recall the exact sequence of group schemes over R: 

(2) O-+ V-~  I -~  A--+O. 

• Let now U C A be an affine open which contains the unit of the special fiber. 

As Ga-torsors are locally trivial in the Zariski topology, there exists a morphism 
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of schemes u: U --+ I which is a section of b. Without loss of generality we may 

assume that  u is a pointed section (if not, compose u with the translation on I 

by some R-rational point of V). Now we take formal completions along identities 

of the special fibers and get 

u:: U: TM A y --+ I:  

and u I is a pointed section of b y = ~p. 

Now applying Proposition 2.9, we get that  the following diagram: 

(7) 

Inv(I/)Ku, • ~ Inv(A:)K~. 

II +~ 
Inv(I/)K~," ( ~ "  D ( A : / K  "~) 

is commutative.  

In the notations above we have 

PROPOSITION 2.10: Ker ( (u l )* )g  = Ker(resAs: H~R(A)K --+ D(A: /K) ) ,  where, 

let us recall, resA: is the restriction map. 

Proo~ 

and 

We have the following commutative diagrams: 

HIR(A)K r~  A H~R(U) K 

resAA ! "~" "~res~t 

H~R(A/)K = H~R(UI)K 

H~R(A) g b_~ H~n(I) g 

to4 + +~" 
H~R(U)K = H~R(U)K 

( I ) ~  (i) ~ g~ (I) ~ g~ ( I )  But we also have Inv g = Inv g : R g = R tC , where all the maps 

are the natural  ones (see Lemma 2.2 and [C-UVB]) so the map induced by b* 

is an isomorphism (also [C-UVB]). Therefore, it follows that  u* -- res A- (b*) -1. 

Moreover, we have the diagram 

I n v ( I ) g  re~l inv( i f )K (uf_~) * D ( A I / K  ) 

u*+ N 

H~R(U) K ~ /  H~R(U/)K : H~R(AI)~: 
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This diagram is also commutative (see [EGAI], section 9). Finally, it follows that  

the diagram 

inv(iY)K (~* D(AI/K) 

H~R(A) K re~ I H~R(AI)K 

is commutative, which proves the Proposition. | 

Now the proof of Theorem 2.3 will follow from a more general statement. 

Let now AK be any split semistable Abelian variety. Let us first recall the 

"uniformization cross" of AK: we have a diagram of rigid analytic groups and 

morphisms 

FK 
$ 

(*) TK --+ GK --~ BK 

AK 

where TK is a split torus over K,  BK is an Abelian variety with good reduction 

over K,  and FK is a free Abelian group over K; TK, GK and BK are algebrizable 

and they have canonical models over R, say T, G and B respectively. Moreover, 

there is an exact sequence of group schemes 

O-+T--+G--+B-+O 

over R which induces the horizontal row in the cross. We formally complete each 

term of this exact sequence along the identities of their special fibers and get an 

exact sequence of formal groups 

O --+ T I -+ G I --+ B f --+0. 

If X is any of the group schemes over R above (A, G, B, T), then the image of 

the map resX±: H~R(X ) --+ H~R(Xf) is in D(Xf/R).  We denote by resx the 

composition: 

H~R(XK ) ~ H~R(X)K --+ D(XI/K).  

LEMMA 2.11: The map resT: H~R(TK ) ~ D(TI/K) is an isomorphism. 

Proo~ This is obvious, as the following diagram is commutative: 

Inv(T)K -+ Inv(Tf)K 

H~R(TK ) r~.~T D(Tf /K ) 
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and all the other maps are isomorphisms. I 

PROPOSITION 2.12: Let A K  be a split semistable Abelian variety over K.  Then 

we have an exact sequence of K-vector spaces 

~ r l  I x  ~slope=0 r ~ 4  
0 -'~ .*.*dRt¢lg) --> H ~ R ( A K  ) D ( A I / K )  --+ O, 

where the slope is considered with respect to Frobenius. 

Proo~ Let us consider the following diagram: 

0 --+ Ker(resB) --+ Ker(resv) --+ 0 

N N II 
0 - ,  H R(BK) -+ H R(CK) -+ 0 

resB J~ resG ~" resT "~ 
0 ~ D ( B I / K )  --+ D ( G S / K )  --+ D ( T I / K )  --+ 0 

$ 4 $ 
0 0 0 

The diagram is commutative,  the vertical sequences and the middle horizontal 

sequence are exact and all the maps are compatible with respect to Frobenii. 

The fact that  the bo t tom horizontal sequance is also exact follows from the 

following facts: for a p-divisible formal group ~" over R we have D(gV/K) 

Ddas~ic(-S/W(k)) ®W(k) K,  where ~ is the special fiber of 3 c (see [K]) and 

the functor Dd~s~ic (the classical Dieudonn6 module functor of Dieudonn6 and 

Cartier) is exact. It  follows that  the top sequence is exact, i.e., that  Ker(resB) = 
= H 1 ( T K  ~sl°pe=O = 0 ger ( resc) .  As Ker(resB) gldRt/Bg ~sl°pe=°s (see [K]) and as dnt J 

it follows that  Ker(resG) = HldRL(GK ~sl°pe=O/ . Now let us consider the following 

diagram (see[C-I]): 

0 -* H o m ( F , K )  --+ Ker(resA) --+ Ker(reso) --+ 0 

il N f] 
0 -+ H o m ( F , K )  --+ H~R(AK ) --+ H~R(GK ) -+ 0 

J,. resA .~ resG -~ 

0 --+ D ( A f / K )  = D ( G f / K )  -+ 0 

As Frobenius acts on Hom(F, K)  as identity, and from the fact just established 

that  Ker(resG) r41 (/-2_. "lslope----0 ~- ~dRk ' -* t c ]  , we deduce that  Ker(resA) = H zdR ~,(AK ~sl°pe=O/ • 

| 

As a consequence of Proposition 2.10 and Proposition 2.12 we get that,  if AK 

is an ordinary semistable Abelian variety over K ,  then we have 

Ker(v*) = Ker((uS)*)K~ = Ker( resA)g~ = -r-ldRVIg]Kurrrl r A  , i s l o p e = 0  

= unit root subspace, 
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which finally proves Theorem 2.3. | 

COROLLARY 2.13: As the unit root subspace of HIR(AK) is Ker(resA), this 
subspace is absolutely canonical, although the Frobenius morphism itself depends 
on a choice of a branch of the p-adic logarithm. 

3. O n  t h e  P o i n c a r ~  p a i r i n g  

Let us go back to Theorem 1.1 of the Introduction. We denote L: = K ~r and 

recall that  AK was our ordinary semistable Abelian variety over K.  We have 

maps 

(Inv(II))L Y-~ (Inv(Al))L and (Lie(AI))L Lie.~v) (Lie(ii))L ' 

and also, we have perfect pairings 

<, > :  (Inv(If))L x (Lie(If))L -+ L and <, > :  (Inv(AI))L × (Lie(Af))i -+ i .  

If x e ( Inv( I I ) )L  and y • (Lie(AI))L, we have 

< v*(x),y > = <  x, Lie(v)(y) >, 

therefore we deduce that  under the pairings above, the subspaces Ker(v*)L and 

Im(Lie(v))L are orthogonal. As we base change from K to L, it is harmless to 

assume tha t  our Abelian variety AK is actually split semistable over K ,  which 

we do. Hence in order to prove Theorem 1.1 we only need 

THEOP~EM 3.1: Suppose AK is a split semistable Abelian variety. Then under 

the Poincard pairing 

1 ! <, >Poin,A : H~R(AK) X H{tR(AK) ~ K 

the unit root subspaces are orthogonal. 

Remark  3.1: The statement of the Theorem is well-known if AK has good 

ordinary reduction; see [C-UVB]. 

Remark  3.2: We first remark that  the Poincard pairing is the same as the 

pairing obtained from the identifications in Lemma 2.2 and the pairing above 

(see [C-DA]). 
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Remark 3.3: Theorem 3.1 is actually a consequence of a more general result, 

namely: if AK is a split semistable Abelian variety then we have 

< ~A~ (a), @A~ (b) > P o i n :  q < a, b >Poin, 

H~R(AK) respec- where ~Au and ~A~ are K-linear Frobenii on H1R(AK) and 1 , 
1 t tively and a E HJR(AK), b e H~n(AK). This formula is known to hold if AK 

has good reduction, so Theorem 3.1 is true in this case. The proof of the above 

formula for split semistable AK will be supplied in [CI-FMD] and is surprisingly 

difficult. 

In order to prove Theorem 3.1 we need to study the behaviour of the Poincar6 

pairing with respect to Frobenius. Let us recall the uniformization cross (*) of 

the semistable Abelian variety AK in section 2 and that we have fixed a branch 

of the p-adic logarithm on K*. So we have exact sequences of filtered, Frobenius, 

monodromy modules: 

0 ~ Horn(F, K) --+ H~R(AK ) --~ H~R(Gx ) -+ 0 

and 

o HIR(BK) H R(G ) H R(T ) O. 

Moreover, these exact sequences are naturally Frobenius-equivariant split (see 

[C-I]), so there exist K-vector subspaces of H~R(AK ) invariant under Frobenius: 

U(A), V(A), W(A), such that 

(a) H~n(AK ) = U(A) ~D V(A) @ W(A) 
and 

(b) U(A) ~- S o m ( r , g ) ,  V(A) ~ H~R(BK ) and W(A) ~- g]n(Tg), where 

these K-linear isomorphisms are Frobenius-equivariant. 

We first prove 

PROPOSITION 3.2: Let a = (x, y) E U(A)@V(A) C H1R(AK) and a'= (x', y') E 
1 t U(A') @ V(A') C H~R(AK). Then, under the identitJcations in (b) above we have 

< a, a' ~ P o i n , A : ~  y, y' ~Poin,B • 

Proo~ Let us denote by hA the composition of the K-linear maps H~R(AK ) ~-~ 
H~R(GK ) g-$ H~n(TK), where fA and gA are the natural maps. The Proposition 

will follow from the following sequence of results. 
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LEMMA 3.3: Under the pairing <, >Poin,A, w e  have 

U(A) ± = Ker(hA,) = U(A') @ V(A'). 

Proof: If we denote by NA: H~R(AK) ~ U(A) the monodromy operator, it is 

proved in [C-I] that  NA is surjective. Moreover, Theorem 3.1 of chapter I of [C-I] 
1 t gives, for b E U(A), b' E H,~R(AK) and x E H~R(AK ) such that  Na(x) ----- b: 

< b,b' >Poin,A=< NA(x),b t ~>Poin,A:< hA(x),hA,(b') > m o n ,  

where <, >mon is the monodromy pairing. Therefore Ker(hA,) = U(A')@V(A') C 
U(A) J-. A dimension count now finishes the proof. I 

PROPOSITION 3.4 (R. Coleman): Let a E Ker(hA) and a' E Ker(hA,). Then we 
have 

<~ a,a' > P o i n , A = <  fA(a),fA,(a') >Poin ,B • 

Proof: It would be enough to prove the lemma if A = A t is the Jacobian of 

a semistable curve X. Let us recall some notations and results from chapter I 

of [C-I]. Let X be a smooth, connected complete curve over K,  with a regular 

semistable model X over R such that the irreducible components of its reduction 

X are smooth; suppose that  there are at least two of them, and that they, as well 

as the singular points of X, are defined over k. 

Let Gr(X) be the graph with oriented edges defined as follows: the vertices 

V(X) of Gr(X) are the irreducible components of X. Let X-~ denote the normal- 

ization of X and n: X-~ --+ X be the natural map. The edges E(A') of Gr(X) will 

be symbols [x, y], where x, y are points of X-~ (k), whose images under n, in X(k), 

are the same. We set A([x, y]) equal to the image in X of the component of ~-n 

on which x lies and B([x, y]) the image in X of the component of ~ on which 

y lies. Then if e = [x, y] E E(X), e will be an edge from A(e) to B(e). If Y is a 

subscheme of X, we denote by Xy the tube of Y, considered as a rigid subspace 

of X. We have a natural involution r of E(X), given by T([X, y]) = [y, X]. If 

e E E ( X ) , w e s e t X e :  =Xn(e). We remark tha tC:  = { X A  [ A E V ( X ) } i s  

an admissible cover of X by basic wide opens. Let 

X°: = H XA and XI:  = H Xe. 
AEV(X) eEE(X) 

Let i be the involution on X 1 which takes a point in Xe C X 1 to the correspond- 

ing point in X~-(e). We have the Meyer-Vietoris exact sequence 

- - ,  H°R(X °) H°R(X1) - H:,R(X) H:,R(X °) H R(XI) - - - ,  
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where the superscript "-" denotes the -1-eigenspace for the action of i and 

the map a is defined as follows: Let (xv)v C H°R(X °) and e E E(A'). Then 

(a(xv)v)e = Xo(e) -xt(e) ,  where o(e) denotes the origin of the oriented edge 

e and t(e) denotes the target of e. Similarly, the map b is defined by: Let 

(yv))v e HIR(x  °) and e • E(X). Then (b(yv)v)e = Yo(e)lX~ - Yt(e) lXe" 
Let AK be the Jacobian of X. It is a semistable Abelian variety over K,  and 

suppose it has the uniformization cross (*)in section 2. Then as shown in chapter 

I of [C-I] we have canonical isomorphisms 

H°R(Xl) - / Im(a)  ~- Hom(F,K)  and Im(a) ~ H~R(GK ). 

We denote by 

1 0 : dTl~. ) ] ,  Hp~r(X ): = K e r ( H I R ( x  °) ~ H~R(X1)) Ker(H~n(X °) ~2~ s g o / X I ~  

where, let us recall, res is the restriction map and Res is the residue along the 

annuli in X 1. 

We now start the proof of Proposition 3.4. Let a ,a  t e Ker hA C H1R(AK) 
and x ,x  t E H~t~(X ) be the restrictions of a,C respectively to X. Then 

1 0 resXo(x),resXo(x ') e Hpar(X ) and we have 

< a, a' >Poi,,A=< x, x' >Poi , ,x=< resXo (x), resXo (x') > P o i n , X  0 , 

where the last equality follows from Lemma 3.3. Now we need to relate this to 

the Poincard pairing on BK. By adding disks to X ° we can view X ° as the 

complement of a disjoint union of closed disks in a (non-connected) proper curve 

Z with good reduction. We have 

1 0 Hpar(X ) ------ g~n(Z), 

and this isomorphism respects cup-products. Let D be the Jacobian of Z. Then 

D and B have canonically isomorphic reductions, so canonically isomorphic first 

crystalline cohomology groups. Therefore 

H~ (X °) ,v H~R(Z) ~ H~R(DK ) ~ H~R(BK ) 

and the isomorphisms above respect the cup-products. This proves Proposition 

3.4 and Proposition 3.2. | 

Remark 3.4: The referee pointed out to us that a direct proof of Proposition 

3.4 (direct in the sense that  it does not use reduction to Jacobians) can be found 
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in [LS] (Proposition 6.2, part 3). As this paper has not been published we prefer 

to retain the proof above. 

Theorem 3.1 follows from the fact that 

H1R(AK) sl°pe=O = U(A) ~ V ( A )  sl°pe=0 

and 
Hd i In '  Xslope=O U(A') @ V(A') sl°pe=° 

and that  Theorem 3.1 is true for BK, Big (see Remark 3.3). 

4. A p p e n d i x  

Let us consider a formal group 5 r ,  of dimension n over R (notations as in section 

2). Let m, pr l ,pr2:5  r x $- -+ $- be the group law and the two projections 

respectively. Let us consider the double complex of R-inodules 

d ~t= d .~c d 
--+ /R --+ " "  A(J:)o f~ --+ ~ /R 

A ( 7  x $ %  A~ i ~ 2 d 
~J:xJ:IR --~ ~J:x~:IR -+ "'" 

where 5 = m* - pr~ - pr~ and A(hr)o and A(.~ x -~)o denote the sub-R-modules 

of A(J c) and respectively A($-x 5r), consisting of power series with constant term 

zero. We have 

PROPOSITION 4.1: H°(C °') = 0 and Hi(C ° ')  ~ D($-/R).  

Proo~ The simple complex of R-modules attached to C .° is 

g ' :  A(JZ)o ~ A(:7 z x  3=)O@ft~/R-~ i 2 _oj . 12a:xJ=lR @ ~J:IR "" 

where Do(F):  -- (5(F),d(F)),  Di(G,w): = (d(G) -( i(w),d(w)),  etc., for F E 

A($')o and (G, w) E A ( ~  x 9r)o ~ 12~/R. 
One can clearly see that H°(C °°) = H ° ( K  °) -- Ker(D0) = 0 and that the map 

U 1 (C")  = g l ( g  .) = Ker(D1)/Im(Do) --+ D(SZ/R) 

given by class(G, w) --+ class(w) is an isomorphism. | 

COROLLARY 4.2: The association jz __+ D($') is a contravariant additive functor. 

The proof follows immediatly from Proposition 4.1. | 

Remark 4.1: The statement of Corollary 4.2 is well-known but the approach in 

[K], for example, is somehow ad hoc. 
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